
Exam-3 Solutions, Math 10560

1. Find the sum of the following series

∞∑
n=1

[
ln(n+ 1)

n+ 2
− ln(n+ 2)

n+ 3

]
.

Solution: First note that this series is a telescoping series. Let Sn be the nth partial
sum of the series.

S1 =
ln 2

3
− ln 3

4

S2 =
ln 2

3
−

�
�
�ln 3

4
+

�
�
�ln 3

4
− ln 4

5
=

ln 2

3
− ln 4

5

S3 =
ln 2

3
−

�
�
�ln 3

4
+

�
�
�ln 3

4
−

�
�
�ln 4

5
+

�
�
�ln 4

5
− ln 5

6
=

ln 2

3
− ln 5

6

Sn =
ln 2

3
−

�
�
�ln 3

4
+

�
�
�ln 3

4
−

�
�
�ln 4

5
+

�
�
�ln 4

5
+ · · · −

���
���ln(n+ 1)

n+ 2
+

���
���ln(n+ 1)

n+ 2
− ln(n+ 2)

n+ 3

This gives Sn = ln 2
3
− ln(n+2)

n+3
. Now,

lim
n→∞

Sn = lim
n→∞

ln 2

3
− ln(n+ 2)

n+ 3

=
ln 2

3
− lim

n→∞

ln(n+ 2)

n+ 3

=
ln 2

3
− lim

x→∞

ln(x+ 2)

x+ 3
[where x ∈ R, i.e. x is a real number]

=
ln 2

3
− lim

x→∞

1

x+ 2
[Using L’Hospital]

=
ln 2

3
− 0

=
ln 2

3

This gives us
∞∑
n=1

[
ln(n+ 1)

n+ 2
− ln(n+ 2)

n+ 3

]
=

ln 2

3
.



2. Use the comparison test or limit comparison test to determine which of the following
series are convergent:

(I)
∞∑
n=2

sin2(n) + 1

2
√
n

(II)
∞∑
n=2

n2 + 2n+ 1

n4 + 2n2 + 1
(III)

∞∑
n=1

1

n2n

Solution: The answer is only (II) and (III) converge.

We first consider
∑∞

n=2
sin2(n)+1

2
√
n

. Using sin2(n) + 1 ≥ 1, we get sin2(n)+1
2
√
n
≥ 1

2
√
n
. The

series
∑∞

n=2
1

2
√
n

= 1
2

∑∞
n=2

1√
n

diverges by p-test. Now comparison test implies that∑∞
n=2

sin2(n)+1
2
√
n

diverges.

Next, we investigate
∑∞

n=2
n2+2n+1
n4+2n2+1

. It looks like we want to use comparison test.
But the problem is that it is not that clear to come up with a nicer series you want
to compare with. Therefore we go for limit comparison test. Let an = n2+2n+1

n4+2n2+1
. We

need bn which is simpler. We find bn by looking at the dominating factors in an which
are n2 in the numerator and n4 in the denominator. Hence, we take bn = n2

n4 = 1
n2 .

Now,

lim
n→∞

an
bn

= lim
n→∞

n2 + 2n+ 1

n4 + 2n2 + 1
· n

2

1

= lim
n→∞

n4 + 2n3 + n2

n4 + 2n2 + 1

= lim
n→∞

n4 + 2n3 + n2

n4 + 2n2 + 1
· 1/n4

1/n4

= lim
n→∞

1 + 2/n+ 1/n2

1 + 2/n2 + 1/n4

= 1

We know that the series
∑∞

n=2
1
n2 converges by p-test. Limit Comparison Test implies

that
∑∞

n=2
n2+2n+1
n4+2n2+1

converges too.

Finally, note that 1
n2n ≤ 1

2n . The series
∑∞

1
1
2n is a geometric series with common

ratio 1
2

and hence converges. Now by comparison test implies
∑∞

n=1
1
n2n converges.



3. Consider the following series

(I)
∞∑
n=2

(−1)n√
n

(II)
∞∑
n=2

n

ln(n2)
(III)

∞∑
n=1

3n+1

2(n!)

Which of the following statements is true?

(a) Only (I) and (III) converge.
(b) Only(III) converges.
(c) Only (I) and (II) converge.
(d)All three converge.
(e) All three diverge.

Solution: Here the correct answer is only (I) and (III) converge.

Let bn = 1√
n
. Then bn > 0, bn is decreasing and limn→∞ bn = 0. Hence by the

alternating series test the series
∑∞

n=2
(−1)n
√
n

converges.

Note that n
ln(n2)

= n
2 ln(n)

≥ 1
2

for all n ≥ 2, because ln(n) ≤ n for all n > 0. In other

words, all of the terms in the sequence{ n
ln(n2)

}∞n=2 are greater than 1
2
. This means

that limn→∞
n

ln(n2)
6= 0. By divergence test,

∑∞
n=2

n
ln(n2)

diverges.

For
∑∞

n=1
3n+1

2(n!)
we will use ratio test. Let an = 3n+1

2(n!)
, then an+1 = 3n+2

2(n+1)!
. Using the

fact that (n + 1)! = (n + 1)n! we get |an+1|
|an| = 3

n+1
. Now, limn→∞

3
n+1

= 0 which is

less than 1. Applying ratio test we see that
∑∞

n=1
3n+1

2(n!)
is convergent.

4. Consider the following series

(I)
∞∑
n=1

(n+ 1)!

n2 · en
(II)

∞∑
n=1

(
2n+1

2n + 1

)n
.

Which of the following statements is true?

(a) They both diverge.
(b) They both converge.
(c) (I) converges and (II) diverges.
(d) (I) diverges and (II) converges.
(e) Deciding whether these series converge or diverge is beyond the scope of the methods
taught in this course.



Solution: The correct answer is they both diverge.

For
∑∞

n=1
(n+1)!
n2·en we will use ratio test. Let an = (n+1)!

n2·en , then an+1 = (n+2)!
(n+1)2·en+1 . Now,

|an+1|
|an|

=
(n+ 2)!

(n+ 1)2 · en+1
· n

2 · en

(n+ 1)!

=
n+ 2

e
· n2

(n+ 1)2

which gives limn→∞
an+1

an
= ∞ which is greater than 1. Now by ratio test the series∑∞

n=1
(n+1)!
n2·en diverges.

Let an =
(

2n+1

2n+1

)n
. Then n

√
|an| = 2n+1

2n+1
= 2· 2n

2n+1
= 2· 1

1+2−n . This gives limn→∞ n
√
an =

2 which is bigger than 1. Now by root test
∑∞

n=1

(
2n+1

2n+1

)n
diverges.

5. Which one of the following series converges conditionally?

(a)
∞∑
n=1

(−1)n√
n+ 1

(b)
∞∑
n=1

cos2(n)

3n

(c)
∞∑
n=1

(−1)nn3

n5 + 1

(d)
∞∑
n=1

(−1)n

5n

(e)
∞∑
n=1

(−1)nen

en + 1

Solution: Correct answer is
∞∑
n=1

(−1)n√
n+ 1

converges conditionally.

The sum converges by the Alternating Series Test since bn = 1√
n+1

> 0, bn+1 =

1√
n+2
≤ 1√

n+1
= bn, for all n and lim

n→∞

1√
n+ 1

= 0. However,
∑∞

n=1
1√
n+1

=
∑∞

n=2
1√
n

diverges by the p-series test with p = 1
2
.

Note that a, b, and e are absolutely convergent and d is divergent.



6. Find a power series representation for the function

x2

(1− x3)2

in the interval (−1, 1).
(Hint: Differentiation of power series may help).

(a)
∞∑
n=1

nx3n−1

(b)
∞∑
n=1

(−1)n3nx3n−1

(c)
∞∑
n=1

nxn−1

(d)
∞∑
n=1

x3n+1

3n+ 1

(e)
∞∑
n=1

x3n

Solution: Write f(x) = x2

(1−x3)2
We note that

d

dx

[
1

1− x3

]
=

3x2

(1− x3)2
= 3f(x).

We use the well-known power series

1

1− x
=
∞∑
n=0

xn for − 1 < x < 1.

Plugging in x3 we obtain:

1

1− x3
=
∞∑
n=0

x3n for − 1 < x < 1.

We differentiate this power series in order to compute a power series for f(x).

3f(x) =
d

dx

[
1

1− x3

]
=

d

dx

∞∑
n=0

x3n

=
∞∑
n=0

(3n)x3n−1.



So,

f(x) =
∞∑
n=0

nx3n−1

in the interval (−1, 1).

7. Use you knowledge of a well known power series to calculate the limit

lim
x→0

2 cos (x2)− 2 + x4

x8

(a)
1

12

(b)
2

8!

(c)
1

2

(d)2

(e) The limit does not exist

Solution: We know the Taylor (Maclaurin) series expansion for cos(x) around x = 0

is given by cos(x) =
∑∞

n=0
(−1)nx2n

(2n)!
. Substituting in x2 we obtain

cos(x2) =
∞∑
n=0

(−1)nx4n

(2n)!
= 1− x4

2!
+
x8

4!
− x12

6!
+ · · ·

Now we can evaluate the limit as follows:

lim
x→0

2 cos (x2)− 2 + x4

x8
= lim

x→0

2
(

1− x4

2!
+ x8

4!
− x12

6!
+ x16

8!
− · · ·

)
− 2 + x4

x8

= lim
x→0

(�2−��x
4 + 2x8

4!
− 2x12

6!
+ 2x16

8!
− · · · )− �2 + ��x

4

x8

= lim
x→0

1

12
− 2x4

6!
− 2x8

8!
+ · · ·

=
1

12
+ 0 + 0 + · · ·

=
1

12
.



8. Which of the following is the third Taylor polynomial of the function

f(x) = sin
(x

2

)
centered at a = π?

(a)1− (x− π)2

4(2!)

(b)1−

(
x− π

2

)2

4(2!)

(c)(x− π)− (x− π)3

3!

(d)1− x2

4(2!)

(e)(x− π)− (x− π)3

2

Solution: The answer is 1− (x− π)2

4(2!)
.

Let P3(x) denote the third Taylor polynomial centered at a = π of the function

f(x) = sin
(x

2

)
. Then,

P3(x) = f (0)(π) +
f ′(π)

1!
(x− π) +

f ′′(π)

2!
(x− π)2 +

f ′′′(π)

3!
(x− π)3

Hence, to find P3(x) we need to find the values: f (0)(π) = f(π), f ′(π), f ′′(π), f ′′′(π).

f (0)(x) = f(x) = sin
(x

2

)
⇒ f (0)(π) = sin

(π
2

)
= 1

f ′(x) =
[
sin
(x

2

)]′
=

1

2
cos
(x

2

)
⇒ f ′(π) =

1

2
cos
(π

2

)
= 0

f ′′(x) =

[
1

2
cos
(x

2

)]′
= −1

4
sin
(x

2

)
⇒ f ′′(π) = −1

4
sin
(π

2

)
= −1

4

f ′′′(x) =

[
−1

4
sin
(x

2

)]′
= −1

8
cos
(x

2

)
⇒ f ′′′(π) = −1

8
cos
(π

2

)
= 0



Hence,

P3(x) = f (0)(π) +
f ′(π)

1!
(x− π) +

f ′′(π)

2!
(x− π)2 +

f ′′′(π)

3!
(x− π)3

= 1 +
0

1!
(x− π) +

−1
4

2!
(x− π)2 +

0

3!
(x− π)3

= 1− (x− π)2

4(2!)

9. Compute the radius of convergence, R, of the following power series

∞∑
n=1

xn

2nn2

(a)R = 2
(b)R = 5
(c)R =∞
(d)R = 1/2
(e)R = 1

Solution: The answer is R = 2.
We use the ratio test: First we compute

∣∣∣an+1

an

∣∣∣
∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣
xn+1

2n+1(n+1)2

xn

2nn2

∣∣∣∣∣ =

∣∣∣∣ x ·��xn

2 ·��2n(n+ 1)2
·�

�2nn2

��xn

∣∣∣∣ =

∣∣∣∣x · n2

2(n+ 1)2

∣∣∣∣ = |x| · n2

2(n+ 1)2

So,

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x| · n2

2(n+ 1)2
=

1

2
|x|

To get convergence, the Ratio Test says that we need L < 1 and so:

L =
1

2
|x| < 1⇒ |x| < 2

Hence, the radius of convergence R = 2.



10. Which of the following gives a power series representation of the function

f(x) = e
− x

2

2

(a)
∞∑
n=0

(−1)nx2n

2nn!

(b)
∞∑
n=0

(−1)nx2n

n!

(c)
∞∑
n=0

(−1)nxn+2

2n(2n)!

(d)
∞∑
n=0

(−1)nxn+2

2nn!

(e)
∞∑
n=0

x2n

(2n)!

Solution: The answer is
∞∑
n=0

(−1)nx2n

2nn!
.

Indeed, we know that ex =
∞∑
n=0

xn

n!
and so if we plug in −x2

2
we obtain:

e−
x2

2 =
∞∑
n=0

(− x2

2
)n

n!
=
∞∑
n=0

(−1)nx2n

2nn!
.

11. Consider the series
∞∑
n=3

(−1)n
(lnn)2

n
. Fill in the following blanks and be sure to show

your work. In each case indicate which test you are using and show how it is applied.

• Is the series absolutely convergent? (YES or NO)

Solution: Answer is No. Note that
∞∑
n=3

∣∣∣∣(−1)n
(lnn)2

n

∣∣∣∣ =
∞∑
n=3

(lnn)2

n
. For n ≥ 3

we know that lnn ≥ 1 which gives (lnn)2

n
≥ 1

n
. Recall that the series

∞∑
n=3

1

n
diverges.

By the Comparison Test,
∞∑
n=3

(lnn)2

n
diverges as well.



• Is the series convergent? (YES or NO)

Solution: This series is an Alternating series. There is a possibility that we can use
Alternating Series Test.

Let bn = (lnn)2

n
. Then bn > 0. Now,

lim
n→∞

(lnn)2

n
= lim

x→∞

(lnx)2

x
[Where x is a real number.]

= lim
x→∞

2 lnx · 1

x
[Using L’Hospital]

= 2 lim
x→∞

1

x
[Using L’Hospital]

= 0

If we can show bn is decreasing then we can use the Alternating Series Test. We will

use Calculus I to see if bn is decreasing. Let f(x) = (lnx)2

x
. Then f ′(x) = 2 lnx−(lnx)2

x2 =
lnx(2−lnx)

x2 . For large x we have 2 − lnx < 0. This shows that f ′(x) < 0 for large x
and hence f(x) is decreasing for large x.

Now by Alternating Series Test,
∞∑
n=3

(−1)n
(lnn)2

n
converges.

12. (a) Give the Taylor series expansion for the antiderivative

F (x) =

∫
cos (
√
x) dx

about 0 (McLaurin Series) where F (0) = 0.
Hint: Use your knowledge of a well known series.

Solution: We know that the Taylor series expansion for cos(x) around x = 0

is cos(x) =
∑∞

n=0
(−1)nx2n

(2n)!
, which has radius of convergence R =∞. Plugging in

√
x we obtain cos(

√
x) =

∑∞
n=0

(−1)nxn

(2n)!
which is valid for all x ≥ 0. Finally, we

compute the indefinite integral

F (x) =

∫ ∞∑
n=0

(−1)nxn

(2n)!
dx =

∞∑
n=0

(−1)n

(2n)!

∫
xndx

=
∞∑
n=0

(−1)n

(2n)!

xn+1

n+ 1
+ C



Plugging in x = 0 we obtain

F (0) =
∞∑
n=0

(−1)n

(2n)!

0n+1

n+ 1
+ C = 0 + C = C.

So, C = 0, and

F (x) =
∞∑
n=0

(−1)n

(2n)!

xn+1

n+ 1
.

(b) Use part (a) to find an expression for the definite integral∫ 1

0

cos(
√
x) dx

as a sum of an infinite series.

Solution: By the Fundamental Theorem of Calculus we know∫ 1

0

cos(
√
x) dx = F (1)− F (0)

=
∞∑
n=0

(−1)n

(2n)!
· 1n+1

n+ 1
− 0

=
∞∑
n=0

(−1)n

(2n)!
· 1

n+ 1

(c) Use the alternating series estimation theorem to estimate the value of the above
definite integral so that the error of estimation is less than 1

100
.

(you may write your answer as a sum of fractions).

Solution: The series in part (b) is of the form
∑∞

n=0(−1)nbn with bn = 1
(2n)!(n+1)

.
We check that this series satisfies the conditions for the Alternating Series Es-
timation Theorem

i) bn+1 = 1
(2(n+1))!(n+2)

≤ 1
(2n)!(n+1)

= bn holds for all n ≥ 0,

ii) lim
n→∞

bn = lim
n→∞

1

(2n)!(n+ 1)
= 0.

Thus |Rn| = |S − Sn| ≤ bn+1. We need to find the value of n which makes



bn+1 <
1

100
. We compute:

b0 = 1

b1 =
1

2!(2)
=

1

4

b2 =
1

4!(3)
=

1

72

b3 =
1

6!(4)
=

1

720 · 4
<

1

100

So E2 = |S−S2| ≤ b3 <
1

100
. So S2 gives approximation of the integral which is

within 1
100

of the actual value. Finally, we compute our estimate for the integral,∫ 1

0

cos(
√
x)dx ≈ S2 = b0 − b1 + b2

= 1− 1

4
+

1

72

=
55

72
.

13. Find the radius of convergence and interval of convergence of the following power series:

∞∑
n=1

(−1)n(x+ 3)n

5n
√
n

.

Solution: We use the ratio test: First we compute
∣∣∣an+1

an

∣∣∣
∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(−1)n+1(x+3)n+1

5n+1
√
n+1

(−1)n(x+3)n

5n
√
n

∣∣∣∣∣∣ =

∣∣∣∣(x+ 3) ·�����(x+ 3)n

5 ·��5n
√
n+ 1

· ��5n
√
n

�����(x+ 3)n

∣∣∣∣ =

∣∣∣∣(x+ 3) ·
√
n

5
√
n+ 1

∣∣∣∣
So,

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(x+ 3) ·
√
n

5
√
n+ 1

∣∣∣∣ =
|x+ 3|

5
lim
n→∞

√
n

n+ 1
=
|x+ 3|

5

To get convergence, the Ratio Test says that we need L < 1 and so:

L =
|x+ 3|

5
< 1⇒ |x+ 3| < 5



Hence, the radius of convergence is R = 5. Now, to get the interval of convergence
we have that it contains (a−R, a+R) where a = −3, R = 5. That is, I.O.C contains
the interval (−8, 2). What is left to do is to check the end points to see if they belong
to the interval of convergence.

x = −8 :
∞∑
n=1

(−1)n(−8 + 3)n

5n
√
n

=
∞∑
n=1

(−1)n(−5)n

5n
√
n

=
∞∑
n=1

(−1)2n
��5n

��5n
√
n

=
∞∑
n=1

1√
n

So, for x = −8 the series diverges since it is a p series with p = 1
2
≤ 1. Therefore,

x = −8 is NOT in the interval of convergence.

x = 2 :
∞∑
n=1

(−1)n(2 + 3)n

5n
√
n

=
∞∑
n=1

(−1)n��5n

��5n
√
n

=
∞∑
n=1

(−1)n√
n

So, for x = 2 the series converges by the Alternating Series Test. Therefore, x = 2
IS in the interval of convergence.
Hence, the interval of convergence is (−8, 2].



Formula Sheet

sin2 x+ cos2 x = 1

1 + tan2 x = sec2 x

sin2 x =
1

2
(1− cos 2x)

cos2 x =
1

2
(1 + cos 2x)

sin 2x = 2 sin x cosx

sinx cos y =
1

2

(
sin(x− y) + sin(x+ y)

)
sinx sin y =

1

2

(
cos(x− y)− cos(x+ y)

)
cosx cos y =

1

2

(
cos(x− y) + cos(x+ y)

)
∫

sec θ = ln | sec θ + tan θ|+ C


